Michael Frame

Personal Homepage

Publication Statistics

Publication period start
Publication period end
Number of co-authors

Number of publications with favourite co-authors

Productive Colleagues
Most productive colleagues in number of publications


Frame, Michael, Neger, Nial (2010): Dimensions and the probability of finding odd numbers in Pascal's triangle and its relativ. In Computers & Graphics, 34 (2) pp. 158-166. http://dx.doi.org/10.1016/j.cag.2009.10.002

Frame, Michael, Neger, Nial (2008): Fractal tetrahedra: What's left in, what's left out, and how to build one in four dimensio. In Computers & Graphics, 32 (3) pp. 371-381. http://dx.doi.org/10.1016/j.cag.2007.12.001

Bedient, Richard, Frame, Michael (2007): Carrying surfaces for return maps of averaged logistic maps. In Computers & Graphics, 31 (6) pp. 887-895. http://dx.doi.org/10.1016/j.cag.2007.06.001

Frame, Michael, Cogevina, Tatiana (2000): An infinite circle inversion limit set fractal. In Computers & Graphics, 24 (5) pp. 797-804. http://dx.doi.org/10.1016/S0097-8493(00)00080-7

Frame, Michael, Meachem, Shontel (2000): Reverse bifurcations in a quartic family. In Computers & Graphics, 24 (1) pp. 143-149. http://dx.doi.org/10.1016/S0097-8493(99)00144-2

Frame, Michael (1994): Sensitivity in cellular automata: Some examples. In Computers & Graphics, 18 (5) pp. 733-737. http://dx.doi.org/10.1016/0097-8493(94)90168-6

Frame, Michael, Angers, Maureen (1994): Some nonlinear iterated function systems. In Computers & Graphics, 18 (1) pp. 119-125. http://dx.doi.org/10.1016/0097-8493(94)90123-6

Philip, A. G. Davis, Frame, Michael, Robucci, Adam (1994): Warped midgets in the Mandelbrot set. In Computers & Graphics, 18 (2) pp. 239-248. http://dx.doi.org/10.1016/0097-8493(94)90099-X

Frame, Michael, Philip, A. G. Davis, Robucci, Adam (1992): A new scaling along the spike of the Mandelbrot set. In Computers & Graphics, 16 (2) pp. 223-234. http://dx.doi.org/10.1016/0097-8493(92)90050-6

Frame, Michael, Robertson, James (1992): A generalized mandelbrot set and the role of critical points. In Computers & Graphics, 16 (1) pp. 35-40. http://dx.doi.org/10.1016/0097-8493(92)90068-7