May 07

If we want users to like our software, we should design it to behave like a likeable person.

-- Alan Cooper

 
 

Featured chapter

Marc Hassenzahl explains the fascinating concept of User Experience and Experience Design. Commentaries by Don Norman, Eric Reiss, Mark Blythe, and Whitney Hess

User Experience and Experience Design !

 
 

Our Latest Books

Kumar and Herger 2013: Gamification at Work: Designing Engaging Business Software...
by Janaki Mythily Kumar and Mario Herger

 
Start reading

Whitworth and Ahmad 2013: The Social Design of Technical Systems: Building technologies for communities...
by Brian Whitworth and Adnan Ahmad

 
Start reading

Soegaard and Dam 2013: The Encyclopedia of Human-Computer Interaction, 2nd Ed....
by Mads Soegaard and Rikke Friis Dam

 
Start reading
 
 

Help us help you!

 
 

Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology


 
Time and place:

2010
Conf. description:
ACM Virtual Reality Software and Technology (VRST) is an annual conference devoted to the technical aspects of virtual reality
Help us!
Do you know when the next conference is? If yes, please add it to the calendar!
Series:
Publisher:
EDIT

References from this conference (2010)

The following articles are from "Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology":

 what's this?

Articles

p. 101-102

Hoang, Thai-Duong and Low, Kok-Lim (2010): Multi-resolution screen-space ambient occlusion. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 101-102. Available online

We present a new screen-space ambient occlusion algorithm (SSAO), which we call Multi-Resolution Screen-Space Ambient Occlusion (MSSAO). The method computes ambient occlusion by combining occlusion values using multiple mipmap levels of a g-buffer. Our method is based on the observation that occlusion due to further-away occluders are lower frequency and thus can be computed in coarser resolutions. On the other hand, nearby occluders cause higher-frequency occlusion that must be computed in finer resolutions. Our method samples occluders in screen space (similar to [Shanmugam and Arikan 2007]) and combines occlusion values across multiple image resolutions. Compared with two state-of-the-art SSAO methods [Filion and McNaughton 2008; Bavoil et al. 2008], results from our algorithm are closer to ray-traced results, even when our algorithm is running at comparable or higher frame rates. Because no random sampling is used, and occlusion values in all levels are combined using edge-preserving blending, our results are free of noise or excessive blurring which are common in other SSAO methods.

© All rights reserved Hoang and Low and/or ACM Press

p. 103-110

Lugrin, Jean-Luc, Cavazza, Marc, Pizzi, David, Vogt, Thurid and Andre, Elisabeth (2010): Exploring the usability of immersive interactive storytelling. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 103-110. Available online

The Entertainment potential of Virtual Reality is yet to be fully realised. In recent years, this potential has been described through the Holodeck metaphor, without however addressing the issue of content creation and gameplay. Recent progress in Interactive Narrative technology makes it possible to envision immersive systems. Yet, little is known about the usability of such systems or which paradigms should be adopted for gameplay and interaction. We report user experiments carried out with a fully immersive Interactive Narrative system based on a CAVE-like system, which explore two interactivity paradigms for user involvement (Actor and Ghost). Our results confirm the potential of immersive Interactive Narratives in terms of performance but also of user acceptance.

© All rights reserved Lugrin et al. and/or ACM Press

p. 11-18

Bolte, Benjamin, Bruder, Gerd, Steinicke, Frank, Hinrichs, Klaus and Lappe, Markus (2010): Augmentation techniques for efficient exploration in head-mounted display environments. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 11-18. Available online

Physical characteristics and constraints of today's head-mounted displays (HMDs) often impair interaction in immersive virtual environments (VEs). For instance, due to the limited field of view (FOV) subtended by the display units in front of the user's eyes more effort is required to explore a VE by head rotations than for exploration in the real world. In this paper we propose a combination of two augmentation techniques that have the potential to make exploration of VEs more efficient: (1) augmenting the geometric FOV (GFOV) used for rendering the VE, and (2) amplifying head rotations while the user changes her head orientation. In order to identify how much manipulation can be applied without users noticing, we conducted two psychophysical experiments in which we analyzed subjects' ability to discriminate between virtual and real head pitch and roll rotations while three different geometric FOVs were used. Our results show that the combination of both techniques has great potential to support efficient exploration of VEs. We found that virtual pitch and roll rotations can be amplified by 30% and 44% respectively, when the GFOV matches the subject's estimation of the most natural FOV. This leads to a possible reduction of the user's effort required to explore the VE using a combination of both techniques by approximately 25%.

© All rights reserved Bolte et al. and/or ACM Press

p. 111-118

Martinet, Anthony, Casiez, Géry and Grisoni, Laurent (2010): The effect of DOF separation in 3D manipulation tasks with multi-touch displays. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 111-118. Available online

Multi-touch displays represent a promising technology for the display and manipulation of data. While the manipulation of 2D data has been widely explored, 3D manipulation with multi-touch displays remains largely uncovered. Based on an analysis of the integration and separation of degrees of freedom, we propose a taxonomy for 3D manipulation techniques with multi-touch displays. Using that taxonomy, we introduce DS3 (Depth-Separated Screen Space), a new 3D manipulation technique based on the separation of translation and rotation. In a controlled experiment, we compare DS3 with Sticky Tools and Screen-Space. Results show that separating the control of translation and rotation significantly affects performance for 3D manipulation, with DS3 being at least 22% faster.

© All rights reserved Martinet et al. and/or ACM Press

p. 119-126

DiVerdi, Stephen, Krishnaswamy, Aravind and Hadap, Sunil (2010): Industrial-strength painting with a virtual bristle brush. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 119-126. Available online

Research in natural media painting has produced impressive images, but those results have not been adopted by commercial applications to date because of the heavy demands of industrial painting workflows. In this paper, we present a new 3D brush model with associated algorithms for stroke generation and bidirectional paint transfer that is suitable for professional use. Our model can reproduce arbitrary brush tip shapes and can be used to generate raster or vector output, none of which was possible in previous simulations. This is achieved by an efficient formulation of bristle behaviors as strand dynamics in a non-inertial reference frame. To demonstrate the robustness and flexibility of our approach, we have integrated our model into major commercial painting and vector editing applications and given it to professional artists to evaluate.

© All rights reserved DiVerdi et al. and/or ACM Press

p. 127-130

Zhang, Jiahua, Baciu, George, Liang, Shuang and Liang, Cheng (2010): A creative try: composing weaving patterns by playing on a multi-input device. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 127-130. Available online

Woven fabrics are widely used in clothing because of their parallel and interlaced properties, which are formed by weaving. Creating a weaving pattern, especially hand weaving for interlacing yarns is a cumbersome task in the textile industry. In this paper, we propose two kinds of playing for creating weaving patterns on multi-input devices: the tie-up plan and the lift plan. Discrete notes on the treble staff are translated into signatures of treadling sequences and discrete notes in the bass staff are translated into signatures of theadling sequences. Artists can use their right hand to compose a treadling sequence for weft yarns and their left hand to play a threading sequence for warp yarns. The treadling and threading sequences become the notes on the full gamut of shafts and treadles. Our result shows that we are able to compose a family of weaving patterns in a similar way to playing the piano in a short time.

© All rights reserved Zhang et al. and/or ACM Press

p. 131-134

Veit, Manuel, Capobianco, Antonio and Bechmann, Dominique (2010): Dynamic decomposition and integration of degrees of freedom for 3-D positioning. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 131-134. Available online

In this paper we present a new interaction technique based on degrees of freedom (DoF) decomposition for accurate positioning in virtual reality environments. This technique (called DIOD for Decomposition and Integration Of Degrees of freedom) is based on an adaptation of the Two-Component Model. It provides two different control levels regarding DoF coordination, one integrating and one separating the manipulation of the DoF. Our hypothesis is that each control level is appropriated to a different phase of the positioning task. During the ballistic phase, users manipulate all the dimensions of the task at the same time. However, during the control phase, users try to manipulate specific dimensions individually. The results of a preliminary study we conducted seem to indicate that the DIOD technique is more efficient than existing techniques.

© All rights reserved Veit et al. and/or ACM Press

p. 135-138

Toyoura, Masahiro, Shono, Tatsuya and Mao, Xiaoyang (2010): BioMetal glove. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 135-138. Available online

We propose a new haptic device for rendering contact sensation of virtual objects in camera-based Augmented Reality (AR) environments. Haptic feedback can help a user to intuitively sense virtual objects. For vision-impaired users, it also means a transfer from optical information observed in the cameras to haptic information. In our system, the contact between the virtual objects and the user's hand is detected with cameras. Therefore, when presenting the contact sensation, optical markers on the hand should not be occluded from the cameras so as to avoid disturbing the estimation of 3D position and posture of the hand. To fulfill such a requirement, we used BioMetal, a promising and versatile light and thin material that shrinks when electric current is applied, which provides the haptic feedback. Strings of BioMetal were stitched onto our proposed BioMetal glove. Because BioMetal does not shrink instantly when energized, a major challenge is how to deal with the time lag. We address this problem by setting buffering regions for pre-heating the BioMetal strings.

© All rights reserved Toyoura et al. and/or ACM Press

p. 139-142

Turchet, Luca, Marchal, Maud, Lecuyer, Anatole, Nordahl, Rolf and Serafin, Stefania (2010): Influence of auditory and visual feedback for perceiving walking over bumps and holes in desktop VR. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 139-142. Available online

In this paper, we present an experiment whose goal is to investigate the role of sound and vision in the recognition of different surface profiles in a walking scenario. Fifteen subjects participated to two within-subjects experiments where they were asked to interact with a desktop system simulating bumps, holes and flat surfaces by means of audio, visual and audio-visual cues. Results of the first experiment show that participants are able to successfully identify the surface profiles provided through the proposed audio-visual techniques. Results of a second experiment in which conflictual audiovisual stimuli were presented, reveal that for some of the proposed visual effects the visual feedback is dominant on the auditory one, while for the others the role of dominance is inverted.

© All rights reserved Turchet et al. and/or ACM Press

p. 143-150

Knoblauch, Daniel and Kuester, Falko (2010): Region-of-interest volumetric visual hull refinement. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 143-150. Available online

This paper introduces a region-of-interest visual hull refinement technique, based on flexible voxel grids for volumetric visual hull reconstructions. Region-of-interest refinement is based on a multi-pass process, beginning with a focussed visual hull reconstruction, resulting in a first 3D approximation of the target, followed by a region-of-interest estimation, tasked with identifying features of interest, which in turn are used to locally refine the voxel grid and extract a higher-resolution surface representation for those regions. This approach is illustrated for the reconstruction of avatars for use in tele-immersion environments, where head and hand regions are of higher interest. To allow reproducability and direct comparison a publicly available data set for human visual hull reconstruction is used. This paper shows that region-of-interest reconstruction of the target is faster and visually comparable to higher resolution focused visual nhull reconstructions. This approach reduces the amount of data generated through the reconstruction, allowing faster post processing, as rendering or networking of the surface voxels. Reconstruction speeds support smooth interactions between the avatar and the virtual environment, while the improved resolution of its facial region and hands creates a higher-degree of immersion and potentially impacts the perception of body language, facial expressions and eye-to-eye contact.

© All rights reserved Knoblauch and Kuester and/or ACM Press

p. 151-158

Liang, Cheng, Baciu, George, Zhang, Jiahua, Chan, Eddie C. L. and Li, Guiqing (2010): Footprint-profile sweep surface: a flexible method for realtime generation and rendering of massive urban buildings. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 151-158. Available online

Generation of a large-scale city requires a significant amount of manual work and computation to process massive location information and model building geometry with multi-level of details. Normally, an urban city is heavily built-up with different architectural building patterns across extensively and topographically varied landscapes. In this paper, we introduce Footprint-Profile Sweep Surfaces (FPSS), a flexible and computationally efficient approach for realtime generation and rendering of massive urban buildings in a heavily built-up city. A solid constituting an urban building is represented as an instance of FPSS and is generated by sweeping a footprint along a profile with specific parameters. We present two forms of FPSS: super FPSS to address the shapes from architecture design and poly FPSS to address the shapes from imported GIS data. We make use of hardware tessellation to allow dynamic LOD according to view distance. A special scaling-translation-rotation displacement performed on the simplified profile is proposed to support detail generation. Experimental results show that realtime performance can be achieved using our approach to generate varied styles of urban buildings. Even inexperienced users are able to generate a building group quickly in their own style based on FPSS.

© All rights reserved Liang et al. and/or ACM Press

p. 159-166

Sajadi, Behzad and Majumder, Aditi (2010): Automatic registration of multiple projectors on swept surfaces. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 159-166. Available online

In this paper, we present the first method to geometrically register multiple projectors on a swept surface (e.g. a truncated dome) using a single uncalibrated camera without using any physical markers on the surface. Our method can even handle non-linear distortion in projectors common in compact setups where a short throw lens is mounted on each projector. Further, when the whole swept surface is not visible from a single camera view, we can register the projectors using multiple pan and tilted views of the same camera. Thus, our method scales well with different size and resolution of the display. Since we recover the 3D shape of the display, we can achieve registration that is correct from any arbitrary viewpoint appropriate for head-tracked single-user virtual reality systems. We can also achieve wallpapered registration more appropriate for multi-user collaborative explorations. Our method achieves sub-pixel accuracy and the image correction required to achieve the registration runs in real-time on the GPU. Swept surfaces are much more immersive than popular display shapes like planes, cylinders and CAVES. Our method opens up the possibility of using such immersive swept surfaces to create more immersive VR systems without compromising the simplicity of having a completely automated registration technique.

© All rights reserved Sajadi and Majumder and/or ACM Press

p. 167-170

Chen, Jiazhou, Granier, Xavier, Lin, Naiyang and Peng, Qunsheng (2010): On-line visualization of underground structures using context features. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 167-170. Available online

We introduce an on-line framework for the visualizing of underground structures that improves X-Ray vision and Focus and Context Rendering for Augmented Reality. Our approach does not require an accurate reconstruction of the 3D environment and runs on-line on modern hardwares. For these purposes, we extract characteristic features from video frames and create visual cues to reveal occlusion relationships. To enhance the perception of occluding order, the extracted features are either directly rendered, or used to create hybrid blending masks: we thus ensures that the resulting cues are clearly noticeable.

© All rights reserved Chen et al. and/or ACM Press

p. 171-174

Kooima, Robert, Prudhomme, Andrew, Schulze, Jurgen, Sandin, Daniel and DeFanti, Thomas (2010): A multi-viewer tiled autostereoscopic virtual reality display. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 171-174. Available online

Recognizing the value of autostereoscopy for 3D displays in public contexts, we pursue the goal of large-scale, high-resolution, immersive virtual reality using lenticular displays. Our contributions include the scalable tiling of lenticular displays to large fields of view and the use of GPU image interleaving and application optimization for real-time performance. In this context, we examine several ways to improve group-viewing by combining user tracking with multi-view displays.

© All rights reserved Kooima et al. and/or ACM Press

p. 175-176

Shi, Meiling, Yang, Lei, Peng, Guoqin and Xu, Dan (2010): A content-aware image resizing method with prominent object size adjusted. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 175-176. Available online

A novel method that prominent object size can be controlled during image resizing is proposed in this paper. By a simple parameter adjustment, this new method can change the primary object size according to user preference. To accomplish this, we present a new quad distortion energy criterion by considering both the shape and the size of a quad. Moreover, we improve the single resolution visual attention model based on the rarity of features to a multiresolution saliency model. Then, redefine the significance map as the weighted average of this multi-resolution saliency result and gradient magnitude.

© All rights reserved Shi et al. and/or ACM Press

p. 177-178

Zhang, Jie, Zheng, Changwen, Lv, Pin and Hu, Xiaohui (2010): Implicit restricted quadtree based visualization of large scale terrain. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 177-178. Available online

Realistic rendering of large scale terrain scene in real-time is an important subject in virtual reality (VR) to construct a virtual environment with immersion and interactivity [Zhao 2009]. Large scale terrain scene visualization is popular in a variety of fields such as geographic information systems (GIS), military maneuvers, games, flight training and so on. Many visualization algorithms for terrain scenes have been proposed during the past decades, but to the authors' knowledge, approaches with high visual accuracy as well as low memory and time complexity have not been developed yet.

© All rights reserved Zhang et al. and/or ACM Press

p. 179-180

Bamarouf, Yasser A. and Smith, Shamus P. (2010): Evaluating virtual weights for haptically enabled online shopping. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 179-180. Available online

Haptic feedback can help users achieve physically tangible interactions which could potentially improve electronic shopping. A set of haptic experiments were conducted to evaluate a number of thresholds for optimum discrimination across three sets of haptic weight ranges. Each set of the weight ranges (i.e. Low, Medium, and High) will have an optimum discrimination threshold for relative weight comparisons. Results showed that 20% provided optimum discrimination threshold for Medium weights (1.07N-1.75N), whereas High

© All rights reserved Bamarouf and Smith and/or ACM Press

p. 181-182

Simard, J., Ammi, M. and Auvray, M. (2010): Closely coupled collaboration for search tasks. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 181-182. Available online

This article proposes to study the role of Collaborative Virtual Environments for the search of residues in molecular environments. This research highlights involved working strategies according the type and context of the task and shows some constraints and conflicting actions that may occur during closely coupled collaboration.

© All rights reserved Simard et al. and/or ACM Press

p. 183-190

Karamouzas, Ioannis and Overmars, Mark (2010): Simulating the local behaviour of small pedestrian groups. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 183-190. Available online

Recent advancements in local methods have significantly improved the collision avoidance behaviour of virtual characters. However, existing methods fail to take into account that in real-life pedestrians tend to walk in small groups, consisting mainly of pairs or triples of individuals. We present a novel approach to simulate the walking behaviour of such small groups. Our model describes how group members interact with each other, with other groups and individuals. We highlight the potential of our method through a wide range of test-case scenarios. A number of metrics are also proposed to quantitatively evaluate the quality of our proposed model.

© All rights reserved Karamouzas and Overmars and/or ACM Press

p. 19-26

Sherstyuk, Andrei, Vincent, Dale and Wang, Kin Lik (2010): Making first steps in VR: monitoring user progress in virtual travel. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 19-26. Available online

We propose a novel framework for monitoring and evaluating user travel activity in Virtual Reality (VR), in real time. Using this framework, we examined how users progressed in mastering two common travel techniques: steering and target-based relocation. We identified three groups of subjects with distinctly different learning patterns, which we called advancing, neutral and regressing learners. In this paper, we explain our evaluation method in detail, describe the experimental study, discuss the results and practical applications of our findings.

© All rights reserved Sherstyuk et al. and/or ACM Press

p. 191-198

Hillaire, Sébastien, Lecuyer, Anatole, Regia-Corte, Tony, Cozot, Rémi, Royan, Jérôme and Breton, Gaspard (2010): A real-time visual attention model for predicting gaze point during first-person exploration of virtual environments. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 191-198. Available online

This paper introduces a novel visual attention model to compute user's gaze position automatically, i.e. without using a gaze-tracking system. Our model is specifically designed for real-time first-person exploration of 3D virtual environments. It is the first model adapted to this context which can compute, in real-time, a continuous gaze point position instead of a set of 3D objects potentially observed by the user. To do so, contrary to previous models which use a mesh-based representation of visual objects, we introduce a representation based on surface-elements. Our model also simulates visual reflexes and the cognitive process which takes place in the brain such as the gaze behavior associated to first-person navigation in the virtual environment. Our visual attention model combines the bottom-up and top-down components to compute a continuous gaze point position on screen that hopefully matches the user's one. We have conducted an experiment to study and compare the performance of our method with a state-of-the-art approach. Our results are found significantly better with more than 100% of accuracy gained. This suggests that computing in realtime a gaze point in a 3D virtual environment is possible and is a valid approach as compared to object-based approaches.

© All rights reserved Hillaire et al. and/or ACM Press

p. 199-202

Gu, Qin, Yun, Chang and Deng, Zhigang (2010): Perceiving motion transitions in pedestrian crowds. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 199-202. Available online

Perception of motion transitions in a pedestrian crowd is affected by many collective features such as crowd density, appearance variations, motion variations, and sub-group interaction patterns. We conducted a series of psychophysical experiments to investigate how these crowd features can influence human perception on walking motion transitions in a crowd when inexpensive motion blending algorithms are used. Our results provide useful implications and practical guidelines for performance-oriented crowd applications such as real-time games to improve the perceptual realism by effectively disguising motion transitions.

© All rights reserved Gu et al. and/or ACM Press

p. 203-210

Deng, Yunhua and Lau, Rynson W. H. (2010): Heat diffusion based dynamic load balancing for distributed virtual environments. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 203-210. Available online

Distributed virtual environments (DVEs) are becoming very popular in recent years, due to their application in online gaming and social networking. One of the main research problems in DVEs is on how to balance the workload when a lot of concurrent users are accessing it. There are a number of load balancing methods proposed to address this problem. However, they either spend too much time on optimizing the partitioning process and become too slow or emphasize on efficiency and the repartitioning process becomes too ineffective. In this paper, we propose a new dynamic load balancing approach for DVEs based on the heat diffusion approach which has been studied in other areas and proved to be very effective and efficient for dynamic load balancing. We have two main contributions. First, we propose an efficient cell selection scheme to identify and select appropriate cells for load migration. Second, we propose two heat diffusion based load balancing algorithms, local and global diffusion. Our results show that the new algorithms are both efficient and effective compared with some existing methods, and the global diffusion method performs the best.

© All rights reserved Deng and Lau and/or ACM Press

p. 211-218

Dey, Arindam, Cunningham, Andrew and Sandor, Christian (2010): Evaluating depth perception of photorealistic mixed reality visualizations for occluded objects in outdoor environments. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 211-218. Available online

Enabling users to accurately perceive the correct depth of occluded objects is one of the major challenges in user interfaces for Mixed Reality (MR). Therefore, several visualization techniques and user evaluations for this area have been published. Our research is focused on photorealistic X-ray type visualizations in outdoor environments. In this paper, we present an evaluation of depth perception in far-field distances through two photorealistic visualizations of occluded objects (X-ray and Melt) in the presence and absence of a depth cue. Our results show that the distance to occluded objects was underestimated in all tested conditions. This finding is curious, as it contradicts previously published results of other researchers. The Melt visualization coupled with a depth cue was the most accurate among all the experimental conditions.

© All rights reserved Dey et al. and/or ACM Press

p. 219-226

Trinh, Thanh-Hai, Querrec, Ronan, Loor, Pierre De and Chevaillier, Pierre (2010): Ensuring semantic spatial constraints in virtual environments using UML/OCL. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 219-226. Available online

Spatial objects and relationships between them, compose a spatial model that is the backbone of virtual environments (VEs). However, due to the natural complexity of both spatial objects and spatial information, the modeling of such spatial relationships is still a difficult task. This paper presents a novel approach for representing semantic spatial relations in VEs using the Unified Modeling Language (UML) and the Object Constraint Language (OCL). Our approach first uses the UML class model as a conceptual model for VEs. We then propose a spatial extension of OCL named VRX-OCL as a high-level and flexible language to cover multidimensional, manifold, and reference frame-dependent spatial constraints. We mainly focus on two important classes of spatial relations, namely, topological and projective relations that allow nonmetric representation of space. The applicability of our approach is demonstrated in the Virtual Physics Laboratory, a VE for learning physics. Based on the constraints satisfaction, the system is able to visualize abstract spatial information and thus provides educational assistance to the learners.

© All rights reserved Trinh et al. and/or ACM Press

p. 227-230

Aguerreche, Laurent, Duval, Thierry and Lecuyer, Anatole (2010): Reconfigurable tangible devices for 3D virtual object manipulation by single or multiple users. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 227-230. Available online

In this paper we introduce the concept of a Reconfigurable Tangible Device for manipulation of 3D objects in virtual environments by single or multiple users. This Reconfigurable Tangible Device (RTD) provides points of manipulation rigidly linked together. The shape of the RTD can be reconfigured at any time as its arms can be compressed or stretched by users at will. Due to its simple shape the Reconfigurable Tangible Device can be attached to any 3D virtual object. Then, it can fully define the motion of the virtual object in 6 Degrees of Freedom. Two examples of Reconfigurable Tangible Device were developed: one with three points of manipulation (a reconfigurable triangle) and one with four points. We illustrate how these two simple devices can match many different shapes of 3D objects, and in different contexts. Preliminary testing was conducted with the RTD based on three points of manipulation involving a collaborative manipulation task in virtual reality. It produced better subjective appreciation for the RTD compared to more classical 3D collaborative techniques.

© All rights reserved Aguerreche et al. and/or ACM Press

p. 231-234

Mao, Tianlu, Jiang, Hao, Li, Jian, Zhang, Yanfeng, Xia, Shihong and Wang, Zhaoqi (2010): Parallelizing continuum crowds. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 231-234. Available online

In this paper, we present a novel parallelizing method for crowd simulators constructed with a continuum model rather than an agent-based model. The basic idea is to partition a crowded virtual environment into some districts, each of which keeps its own dynamic continuum fields and has several transitional blocks to make individuals keep continuum motion from one district to another. Our method makes continuum models to be parallelizable while preserving their existing superiority of generating smooth motion. Moreover, for most of large-scale applications, our partitioning method effectively simplifies the complexity of simulation. Experiments show that our method has achieved super-linear speedup and could employ more than one hundred worker processors to simulate 1 million people in an area of 672,400m².

© All rights reserved Mao et al. and/or ACM Press

p. 27-34

Terziman, Léo, Marchal, Maud, Emily, Mathieu, Multon, Franck, Arnaldi, Bruno and Lecuyer, Anatole (2010): Shake-your-head: revisiting walking-in-place for desktop virtual reality. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 27-34. Available online

The Walking-In-Place interaction technique was introduced to navigate infinitely in 3D virtual worlds by walking in place in the real world. The technique has been initially developed for users standing in immersive setups and was built upon sophisticated visual displays and tracking equipments. In this paper, we propose to revisit the whole pipeline of the Walking-In-Place technique to match a larger set of configurations and apply it notably to the context of desktop Virtual Reality. With our novel "Shake-Your-Head" technique, the user is left with the possibility to sit down, and to use small screens and standard input devices such as a basic webcam for tracking. The locomotion simulation can compute various motions such as turning, jumping and crawling, using as sole input the head movements of the user. We also introduce the use of additional visual feedback based on camera motions to enhance the walking sensations. An experiment was conducted to compare our technique with classical input devices used for navigating in desktop VR. Interestingly, the results showed that our technique could even allow faster navigations when sitting, after a short learning. Our technique was also perceived as more fun and increasing presence, and was generally more appreciated for VR navigation.

© All rights reserved Terziman et al. and/or ACM Press

p. 35-42

Herling, Jan and Broll, Wolfgang (2010): An adaptive training-free feature tracker for mobile phones. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 35-42. Available online

While tracking technologies based on fiducial markers have dominated the development of Augmented Reality (AR) applications for almost a decade, various real-time capable approaches to markerless tracking have recently been presented. However, most existing approaches do not yet achieve sufficient frame rates for AR on mobile phones or at least require an extensive training phase in advance. In this paper we will present our approach on feature based tracking applying robust SURF features. The implementation is more than one magnitude faster than previous ones, allowing running even on mobile phones at highly interactive rates. In contrast to other feature based approaches on mobile phones, our implementation may immediately track features captured from a photo without any training. Further, the approach is not restricted to planar surfaces, but may use features of 3D objects.

© All rights reserved Herling and Broll and/or ACM Press

p. 43-46

Sherstyuk, Andrei and State, Andrei (2010): Dynamic eye convergence for head-mounted displays. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 43-46. Available online

A virtual hand metaphor remains by far the most popular technique for direct object manipulation in immersive Virtual Reality (VR). The utility of the virtual hand depends on a user's ability to see it correctly in stereoscopic 3D, especially in tasks that require continuous, precise hand-eye coordination. We present a mechanism that dynamically converges left and right cameras on target objects in VR, mimicking the effect that naturally happens in real life. As a result, the system maintains optimal conditions for stereoscopic viewing at varying depths, in real-time. We describe the algorithm, implementation details and preliminary results from pilot tests.

© All rights reserved Sherstyuk and State and/or ACM Press

p. 47-50

Spanlang, Bernhard, Normand, Jean-Marie, Giannopoulos, Elias and Slater, Mel (2010): A first person avatar system with haptic feedback. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 47-50. Available online

We describe a system that shows how to substitute a person's body in virtual reality by a virtual body (or avatar). The avatar is seen from a first person perspective, moves as the person moves and the system generates touch on the real person's body when the avatar is touched. Such replacement of the person's real body by a virtual body requires a wide field-of-view head-mounted display, real-time whole body tracking, and tactile feedback. We show how to achieve this with a variety of off-the-shelf hardware and software, and also custom systems for real-time avatar rendering and collision detection. We present an overview of the system and detail on some of its components. We provide examples of how such a system is being used in some of our current experimental studies of embodiment.

© All rights reserved Spanlang et al. and/or ACM Press

p. 51-54

Kitamura, Yoshifumi, Kikukawa, Tetsuya, Mieda, Satoshi, Kunita, Yotaka, Isogai, Megumi and Kimata, Hideaki (2010): Image-based 3D telecopier: a system for sharing a 3D object by multiple groups of people at remote locations. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 51-54. Available online

We propose a system that allows multiple groups of users at remote locations to naturally share a 3D image of real objects. All users can interactively observe a 3D stereoscopic image without distortion from their own viewpoints. The system basically consists of a combination of subsystems: imaging and display. The imaging subsystem generates images of the real object observed from arbitrary viewpoints based on image-based rendering technique implemented on GPU. The display system generates a 3D virtual image of the real object to be interactively observed by multiple people around the tabletop display. People at one place just put the real object on their imaging system to capture a set of its images from sparse viewpoints around it; other groups of multiple persons at remote places connected by networks observe its virtual image from arbitrary viewpoints, as if there is a copy of the real object, on their display systems. This paper describes details of the system configurations and algorithms. Then discussions are made based on experimental results.

© All rights reserved Kitamura et al. and/or ACM Press

p. 55-62

Wong, Sai-Keung, Liu, Cheng-Min, Baciu, George and Yeh, Chiao-Chin (2010): Robust continuous collision detection for deformable objects. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 55-62. Available online

Continuous collision detection improves the computation of the contact information for interacting objects in dynamic virtual environments. The computation cost is relatively high in the phase of the elementary test processing. In virtual environments, such as crowds in large urban models, there is a large portion of feature pairs that do not collide but the computation is relatively of high cost. In this paper, we propose a robust approach for solving the scalability of the collision detection problem by applying four distinct phases. First, k-DOPs are used for culling non-proximal triangles. Second, the feature assignment scheme is used for minimizing the number of potentially colliding feature pairs. Third, an intrinsic filter is employed for filtering non-coplanar feature pairs. Forth, we use a direct method for computing the contact time that is more efficient than the numerical Interval Newton method. We have implemented our system and have compared its performance with the most recently developed approaches. Six benchmarks were evaluated and the complexity of the models was up to 1.5M triangles. The experimental results show that our method improves the performance for the elementary tests.

© All rights reserved Wong et al. and/or ACM Press

p. 63-70

Weller, Rene, Sagardia, Mikel, Mainzer, David, Hulin, Thomas, Zachmann, Gabriel and Preusche, Carsten (2010): A benchmarking suite for 6-DOF real time collision response algorithms. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 63-70. Available online

We present a benchmarking suite for rigid object collision detection and collision response schemes. The proposed benchmarking suite can evaluate both the performance as well as the quality of the collision response. The former is achieved by densely sampling the configuration space of a large number of highly detailed objects; the latter is achieved by a novel methodology that comprises a number of models for certain collision scenarios. With these models, we compare the force and torque signals both in direction and magnitude. Our device-independent approach allows objective predictions for physically-based simulations as well as 6-DOF haptic rendering scenarios. In the results, we show a comprehensive example application of our benchmarks comparing two quite different algorithms utilizing our proposed benchmarking suite. This proves empirically that our methodology can become a standard evaluation framework.

© All rights reserved Weller et al. and/or ACM Press

p. 71-78

Maejima, Akinobu, Yarimizu, Hiroto, Kubo, Hiroyuki and Morishima, Shigeo (2010): Automatic generation of head models and facial animations considering personal characteristics. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 71-78. Available online

We propose a new automatic head modeling system to generate individualized head models which can express person-specific facial expressions. The head modeling system consists of two core processes. The head modeling process with the proposed automatic mesh completion generates a whole head model only from facial range scan data. The key shape generation process generates key shapes for the generated head model based on physics-based facial muscle simulation with an individual muscle layout estimated from subject's facial expression videos. Facial animations considering personal characteristics can be synthesized using the individualized head model and key shapes. Experimental results show that the proposed system can generate head models where 84% of subjects can identify themselves. Therefore, we conclude that our head modeling system is effective to games and entertainment systems like a Future Cast System.

© All rights reserved Maejima et al. and/or ACM Press

p. 79-82

Tang, Chen, Li, Sheng and Wang, Guoping (2010): Reduced deforming filter culling for fast continuous collision detection. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 79-82. Available online

We propose a novel efficient deforming filter culling method for continuous collision detection (CCD) problem performed by dimension reduction in subspace. We present a fast linear filter (1D reduced filter) considering relative motion between primitives. We also provide a conservative and fast planar filter test (2D reduced filter) for self-collision feature pairs considering relative motion between vertex and edge. Filter test in subspace removes large amount of false positives and elementary tests with low cost, and improve the overall performance of collision query. We demonstrate our approach and compare it with previous alternatives in kinds of dynamic scenes. Combined with our linear and planar reduced filter, we observe a magnitude of speed improvement on elementary tests (over 2x) compared against previous ones. Our method keeps stable performance for simulations with large step time.

© All rights reserved Tang et al. and/or ACM Press

p. 83-86

Yang, Meng, Huang, Meng-Cheng, Yang, Gang and Wu, En-Hua (2010): Physically-based animation for realistic interactions between tree branches and raindrops. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 83-86. Available online

This paper proposes a novel approach to animation realistic interactions between tree branches and raindrops in a physically-based way. A new elastic model using a three-prism structures is presented to flexibly bend and twist tree branches naturally in the first time. Various distinct forms of interactions when or after raindrops hitting on tree branches can be well simulated using a new efficient technique specially designed for liquid motion on non-rigid objects with hydrophilic surfaces. Experimental results indicate that our approach can be used to simulate the interactions between tree branches and raindrops efficiently and realistically.

© All rights reserved Yang et al. and/or ACM Press

p. 87-90

Hoyet, Ludovic, Multon, Franck, Lecuyer, Anatole and Komura, Taku (2010): Can we distinguish biological motions of virtual humans?: perceptual study with captured motions of weight lifting. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 87-90. Available online

Perception of biological motions is a key issue in order to evaluate the quality and the credibility of motions of virtual humans. This paper presents a perceptual study to evaluate if human beings are able to accurately distinguish differences in natural lifting motions with various masses in virtual environments (VE), which is not the case. However, they reached very close levels of accuracy when watching to computer animations compared to videos. Still, quotes of participants suggest that the discrimination process is easier in videos of real motions which included muscles contractions, more degrees of freedom, etc. These results can be used to help animators to design efficient physically-based animations.

© All rights reserved Hoyet et al. and/or ACM Press

p. 91-92

Hu, Yong, Qi, Yue and Shen, Fangyang (2010): Modeling spatially-varying reflectance based on Kernel Nyström. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 91-92. Available online

We present a new method for modeling real-world surface reflectance, described with non-parametric spatially-varying bidirectional reflectance distribution functions (SVBRDF). Our method seeks to achieve high reconstruction accuracy, compactness and "editability" of representation meanwhile speeding up both the SVBRDF capturing and modeling processes. For a planar surface, we 1) design a fast capturing device to acquire reflectance samples at dense surface locations; 2) propose a Laplacian-based angular interpolation scheme for a 2D slice of BRDF at a given surface location, and then a Kernel Nyström method for SVBRDF data matrix reconstruction; 3) propose a practical algorithm to extract linear-independent basis BRDFs, and to calculate blending weights through projecting reconstructed reflectance onto these bases. Results demonstrate that our approach models real-world reflectance with both high accuracy and high visual fidelity for real-time virtual environment rendering.

© All rights reserved Hu et al. and/or ACM Press

p. 93-94

Sheng, Bin and Sun, Hanqiu (2010): Efficient deformable geometry image-maps. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 93-94. Available online

Multiresolution rendering of deformable models, performing fast rendering of global deformations while preserving local surface details, is usually a computation-costly and time-consuming process, because two non-trivial operators are involved. We propose a novel GPU-based adaptive rendering of deforming mesh sequence on sole-cube maps (SCM), which is a variant of geometry images built upon spherical parameterizations. We also introduce the differential coordinates to bound the local resampling error for supporting details preservation and view-dependent visualization. By precomputing the adaptive SCM texture atlas of deforming mesh sequences as well as their differential coordinates, we can map both the deformation and the level-of-details (LOD) operator to the GPU. The proposed algorithm enables us to reconstruct the deformed positions and sufficiently fine-scale approximations of deforming mesh sequences for efficient GPU processing. The GPU-friendly data structure and process allow us to render dynamically deforming 3D models with GPU parallelization, also our system improves the efficiency of the manipulations of node selection and boundary stitching, significantly alleviating the computing load on CPU.

© All rights reserved Sheng and Sun and/or ACM Press

p. 95-96

Lian, Xin and Liao, Qingmin (2010): Locating human hands for real-time pose estimation from monocular video. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 95-96. Available online

This paper presents a real-time system to detect and estimate the pose of human upper body from a monocular video. A novel approach to locate the hands is proposed, which is designed to cope with the complicated situations such as short sleeves, fast motion and occlusion. Human silhouette and skin color blobs are extracted from the frames of the video; then candidate locations of head, hands, and elbows are chosen and evaluated by an inverse kinematics based strategy. Experiments demonstrate the efficacy and robustness of this approach. The algorithm is developed for a camera-based tennis game, in which poses of a player have to be estimated in real time (for avatar animation, action recognition, etc). It can also be applied in other human-computer interaction applications.

© All rights reserved Lian and Liao and/or ACM Press

p. 97-98

Rhienmora, Phattanapon, Gajananan, Kugamoorthy, Haddawy, Peter, Dailey, Matthew N. and Suebnukarn, Siriwan (2010): Augmented reality haptics system for dental surgical skills training. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 97-98. Available online

We have developed a virtual reality (VR) and an augmented reality (AR) dental training simulator utilizing a haptic device. The simulators utilize volumetric force feedback computation and real time modification of the volumetric data. They include a virtual mirror to facilitate indirect vision during a simulated operation. The AR environment allows students to practice surgery in correct postures by combining the 3D tooth and tool models with the real-world view and displaying the result through a video see-through head-mounted display (HMD). Preliminary results from an initial evaluation show that the system is a promising tool to supplement dental training and that there are advantages of the AR over the VR approach.

© All rights reserved Rhienmora et al. and/or ACM Press

p. 99-100

Peng, Bo, Low, Kok-Lim and Hoang, Thai-Duong (2010): Real-time CSG rendering using fragment sort. In: Proceedings of the 2010 ACM Symposium on Virtual Reality Software and Technology 2010. pp. 99-100. Available online

Constructive solid geometry (CSG) is a geometric representation where a complex 3D object is represented by combining simple solid objects (called primitives) using Boolean operators. The primitives can be convex or non-convex solids. The basic Boolean operations are union, intersection and subtraction.

© All rights reserved Peng et al. and/or ACM Press




 
 

Join our community and advance:

 
1.

Your career

 
2.

Your network

 
 3.

Your skills

 
 
 
 
 

User-contributed notes

Give us your opinion! Do you have any comments/additions
that you would like other visitors to see?

 
comment You (your email) say: May 7th, 2014
#1
May 7
Add a thoughtful commentary or note to this page ! 
 

your homepage, facebook profile, twitter, or the like
will be spam-protected
How many?
= e.g. "6"
By submitting you agree to the Site Terms
 
 
 
 

Changes to this page (conference)

17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Added
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified
17 Jan 2011: Modified

Page Information

Page maintainer: The Editorial Team
URL: http://www.interaction-design.org/references/conferences/proceedings_of_the_2010_acm_symposium_on_virtual_reality_software_and_technology.html
May 07

If we want users to like our software, we should design it to behave like a likeable person.

-- Alan Cooper

 
 

Featured chapter

Marc Hassenzahl explains the fascinating concept of User Experience and Experience Design. Commentaries by Don Norman, Eric Reiss, Mark Blythe, and Whitney Hess

User Experience and Experience Design !

 
 

Our Latest Books

Kumar and Herger 2013: Gamification at Work: Designing Engaging Business Software...
by Janaki Mythily Kumar and Mario Herger

 
Start reading

Whitworth and Ahmad 2013: The Social Design of Technical Systems: Building technologies for communities...
by Brian Whitworth and Adnan Ahmad

 
Start reading

Soegaard and Dam 2013: The Encyclopedia of Human-Computer Interaction, 2nd Ed....
by Mads Soegaard and Rikke Friis Dam

 
Start reading
 
 

Help us help you!