Upcoming Courses

go to course
Psychology of Interaction Design: The Ultimate Guide
Starts tomorrow LAST CALL!
go to course
User-Centred Design - Module 3
90% booked. Starts in 5 days

Featured chapter

Marc Hassenzahl explains the fascinating concept of User Experience and Experience Design. Commentaries by Don Norman, Eric Reiss, Mark Blythe, and Whitney Hess

User Experience and Experience Design !


Our Latest Books

The Social Design of Technical Systems: Building technologies for communities. 2nd Edition
by Brian Whitworth and Adnan Ahmad
start reading
Gamification at Work: Designing Engaging Business Software
by Janaki Mythily Kumar and Mario Herger
start reading
The Social Design of Technical Systems: Building technologies for communities
by Brian Whitworth and Adnan Ahmad
start reading
The Encyclopedia of Human-Computer Interaction, 2nd Ed.
by Mads Soegaard and Rikke Friis Dam
start reading

Tim Campbell


Publications by Tim Campbell (bibliography)

 what's this?
Edit | Del

Campbell, Tim, Larson, Eric, Cohn, Gabe, Alcaide, Ramses and Patel, Shwetak N. (2010): WATTR: a method for self-powered wireless sensing of water activity in the home. In: Proceedings of the 2010 International Conference on Uniquitous Computing 2010. pp. 169-172. http://doi.acm.org/10.1145/1864349.1864378

We present WATTR, a novel self-powered water activity sensor that utilizes residential water pressure impulses as both a powering and sensing source. Consisting of a power harvesting circuit, piezoelectric sensor, ultra-low-power 16-bit microcontroller, 16-bit analog-to-digital converter (ADC), and a 433 MHz wireless transmitter, WATTR is capable of sampling home water pressure at 33 Hz and transmitting over 3 m when any water fixture in the home is opened or closed. WATTR provides an alternative sensing solution to the power intensive Bluetooth-based sensor used in the HydroSense project by Froehlich et al. [2] for single-point whole-home water usage. We demonstrate WATTR as a viable self-powered sensor capable of monitoring and transmitting water usage data without the use of a battery. Unlike other water-based power harvesters, WATTR does not waste water to power itself. We discuss the design, implementation, and experimental verification of the WATTR device.

© All rights reserved Campbell et al. and/or their publisher

Edit | Del

Gupta, Sidhant, Campbell, Tim, Hightower, Jeffrey R. and Patel, Shwetak N. (2010): SqueezeBlock: using virtual springs in mobile devices for eyes-free interaction. In: Proceedings of the 2010 ACM Symposium on User Interface Software and Technology 2010. pp. 101-104. http://doi.acm.org/10.1145/1866029.1866046

Haptic feedback provides an additional interaction channel when auditory and visual feedback may not be appropriate. We present a novel haptic feedback system that changes its elasticity to convey information for eyes-free interaction. SqueezeBlock is an electro-mechanical system that can realize a virtual spring having a programmatically controlled spring constant. It also allows for additional haptic modalities by altering the Hooke's Law linear-elastic force-displacement equation, such as non-linear springs, size changes, and spring length (range of motion) variations. This ability to program arbitrarily spring constants also allows for "click" and button-like feedback. We present several potential applications along with results from a study showing how well participants can distinguish between several levels of stiffness, size, and range of motion. We conclude with implications for interaction design.

© All rights reserved Gupta et al. and/or their publisher

Add publication
Show list on your website

Join our community and advance:




Join our community!

Page Information

Page maintainer: The Editorial Team
URL: http://www.interaction-design.org/references/authors/tim_campbell.html